# Recent updates of COPD exacerbation

전남대학교병원 호흡기내과 이재경

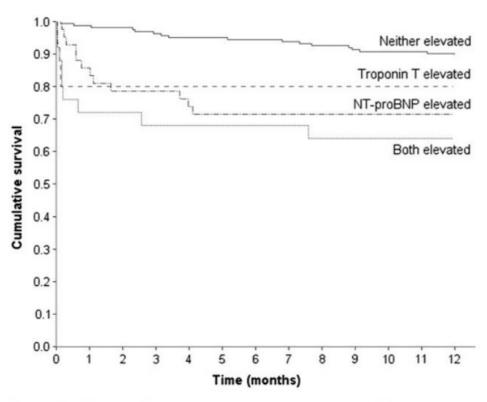


# COPD Exacerbation Syndrome: The Spanish Perspective on an Old Dilemma

Juan Jose Soler-Cataluña<sup>1,2</sup>, Jose Luis Lopez-Campos (5)<sup>2,3</sup>

<sup>1</sup>Servicio de Neumología, Hospital Arnau de Vilanova-Lliria, Valencia, Departamento de Medicina, Universitat de València, Valencia, Spain; <sup>2</sup>Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; <sup>3</sup>Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain

Correspondence: Jose Luis Lopez-Campos, Hospital Universitario Virgen del Rocío, Avda, Manuel Siurot, s/n, Seville, 41013, Spain, Tel +34 955013166, Email lopezcampos@separ.es


Table I Definitions of Exacerbation According to Different Recommendation Documents

| Document                   | Definition                                                                                                                                                                                                                                                                                                                             |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GOLD 2022 <sup>74</sup>    | Acute worsening of respiratory symptoms that results in additional therapy.                                                                                                                                                                                                                                                            |
| GesEPOC 2021 <sup>11</sup> | Episode of clinical instability that occurs in a patient with COPD as a result of the aggravation of the expiratory limitation to airflow or the underlying inflammatory process and is characterized by an acute worsening of respiratory symptoms with respect to the baseline situation of the individual.                          |
| Rome 2021 <sup>40</sup>    | In a patient with COPD, an exacerbation is an event characterized by dyspnea and/or cough and sputum that worsen over#14 days, which may be accompanied by tachypnea and/or tachycardia and is often associated with increased local and systemic inflammation caused by airway infection, pollution, or other insults to the airways. |

Highly non-specific
 confused with other diseases
 (pneumonia, heart failure, acute ischemic heart disease, arrhythmia, pulmonary embolism or anxiety)

Differential diagnosis is not easy, overlapping occurs

1/5 patients with a diagnosis of exacerbation show biomarkers of ventricular dysfunction or ischemic damage



**Figure 1** Kaplan—Meier survival curve for patients with acute exacerbation of chronic obstructive pulmonary disease (COPD) stratified according to cardiac biomarker status. Survival was worse in patients with both biomarkers elevated compared with patients with normal biomarkers (log-rank test, p<0.0001). Survivals in patients with elevated N-terminal pro-brain natriuretic protein (NT-proBNP) and cardiac troponin T alone are also significantly different from those in patients with neither biomarkers elevated (log-rank test, p<0.001 and p=0.004 respectively).

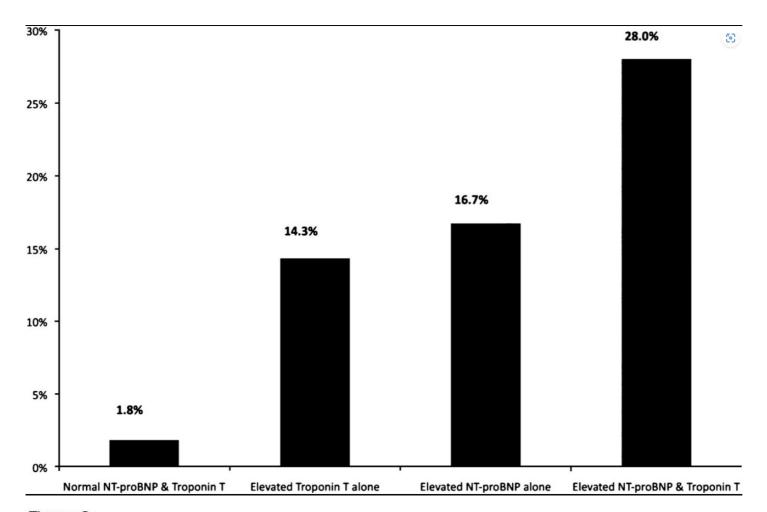
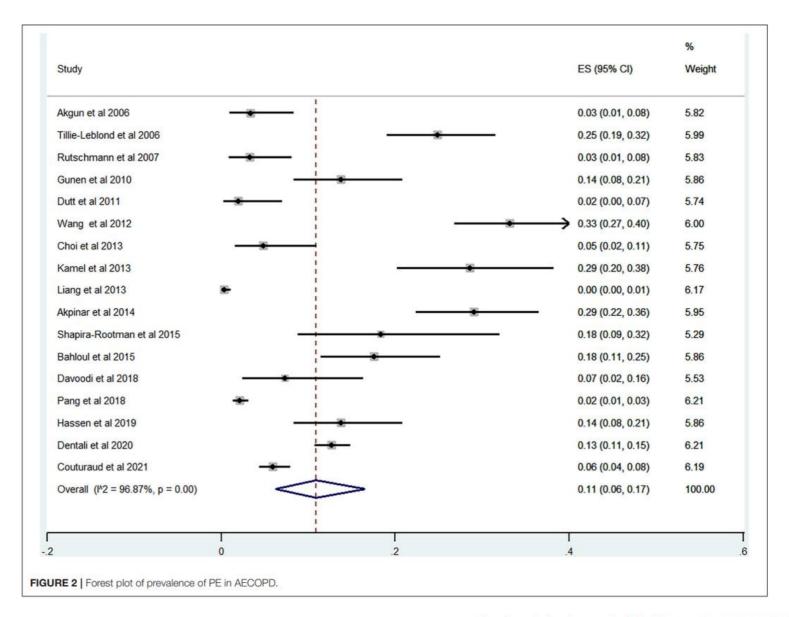




Figure 2

Thirty-day mortality after exacerbation of chronic obstructive pulmonary disease (COPD) according to markers of cardiac dysfunction status (%). Thirty-day mortality was significantly lower in patients who had normal N-terminal pro-brain natriuretic peptide (NT-proBNP) and troponin T levels (three deaths among 163 patients) compared with patients who had elevated troponin T alone (2/14, p=0.05), elevated NT-proBNP alone (7/42), p=0.0007) and both elevated troponin T and NT-proBNP (7/25, p<0.0001). Mortality between groups was compared using  $\chi^2$  test.



Medicine, Seoul, Korea

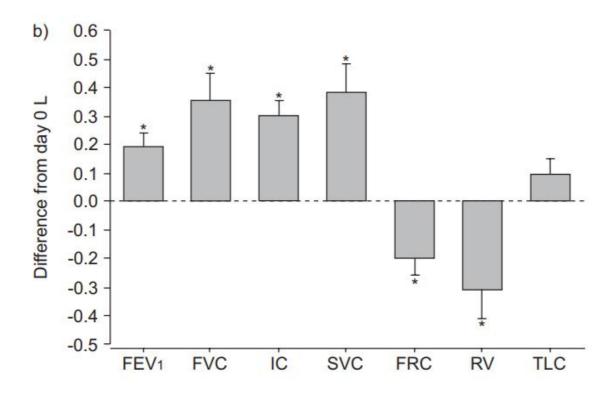
#### Utility of Computed Tomography in a Differential Diagnosis for the Patients with an Initial Diagnosis of Chronic Obstructive Pulmonary Disease Exacerbation



Hyung Jun Park, M.D. 10, Soo Han Kim, M.D. 1, Ho-Cheol Kim, M.D. 1, Bo Young Lee, M.D., Ph.D. 1, Sei Won Lee, M.D., Ph.D. 1, Jae Seung Lee, M.D., Ph.D. 1, Sang-Do Lee, M.D., Ph.D. 1, Joon Beom Seo, M.D., Ph.D. 20 and Yeon-Mok Oh, M.D., Ph.D. 10

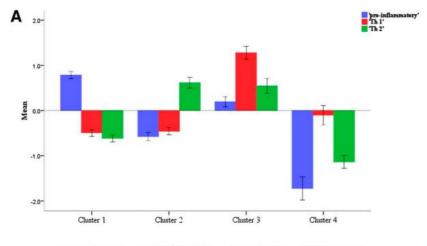
Departments of Pulmonary and Critical Care Medicine and Radiology, Asan Medical Center, University of Ulsan College of

Table 2. Changed or additional diagnosis and treatment after chest CT


| Diagnosis                     | No. of patients | Treatment                                            |
|-------------------------------|-----------------|------------------------------------------------------|
| Changed diagnosis             | 2/64*           | Changed treatment accordingly                        |
| Pulmonary embolism            | 1               | Anticoagulation                                      |
| Lung cancer progression       | 1               | No treatment change                                  |
| Additional diagnosis          | 27/64           | Additional examination or treatment                  |
| Pneumonia (small extents)     | $21^{\dagger}$  | Antibiotics in 4 patients, stop steroid in 1 patient |
| Lung nodule                   | 2               | PCNBx/follow up chest CT*                            |
| Small amount pleural effusion | 1               | Diuretics use                                        |
| Pericardial effusion          | 1               | Follow up echocardiography                           |
| Pulmonary edema               | 1               | Observation                                          |
| Pulmonary hypertension        | 1               | Sildenafil                                           |

<sup>\*</sup>After computed tomography (CT) diagnosis was changed in two patients out of 64 patients who performed CT. †17 out of 21 patients already used antibiotics before CT was performed; to only 4 patients, antibiotics was added. †One patient with lung nodule performed percutaneous needle biopsy for lung nodule and squamous cell carcinoma was diagnosed but no further treatment for poor performance status. The other patient with lung nodule was examined 6 months later, and the lung nodule disappeared at follow up chest CT.

2) Underlying mechanism is not taken into account in the GOLD definition


Inflammation(pulmonary and systemic) functional changes(worsening of airflow limitation, air trapping)

-> key symptoms



**FIGURE 1.** Changes in spirometric and lung volume measurements from day 0 to the final visit in all completed patients (n=20). FEV1: forced expiratory volume in one second; FVC: forced vital capacity; PEFR: peak expiratory flow rate; FEF25-75%: forced mid-expiratory flow; IC: inspiratory capacity; SVC: slow vital capacity; FRC: functional residual capacity; RV: residual volume; TLC: total lung capacity. \*: p<0.05 difference from day 0.

3) It does not recognize the heterogeneity and complexity of the exacerbation, although different phenotypes or endotypes have been described.



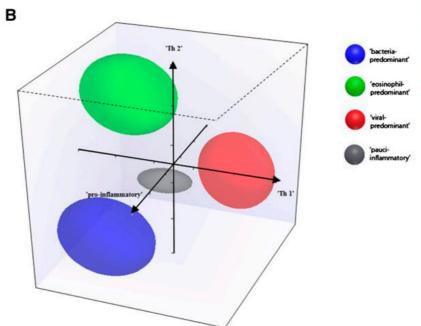
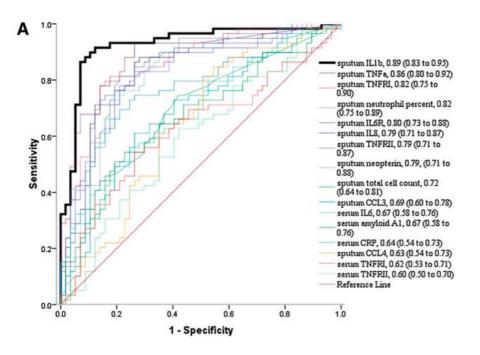




Figure 2. (A) Bar chart representing the mean factor scores for the three identified biologic factors (proinflammatory, Th1, and Th 2) categorized according to the four biologic clusters. (B) Proportional representation of biologic chronic obstructive pulmonary disease exacerbation clusters in three-dimensional ellipsoids. Cluster 1 is termed "bacteria-predominant" and is outlined in blue, cluster 2 is termed "eosinophil-predominant" and is outlined in green, cluster 3 is termed "virus-predominant" and is outlined in red, and cluster 4 is termed "pauciinflammatory" and is outlined in gray.



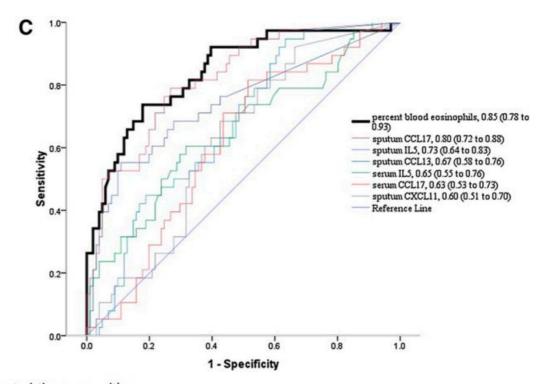



Figure 3. Receiver operating characteristic curve with area under the curve (95% confidence interval) illustrating biomarkers that positively predict (A) bacteria-, (B) virus-, and (C) eosinophil-associated exacerbations. Area under the curve (95% confidence interval) is shown in the parentheses. CCL = ; CRP = C-reactive protein; CXCL = ; TNF = tumor necrosis factor.

4) Although the GOLD definition includes the need for "additional treatment", some patients suffer from worsening of respiratory symptoms at home without contact with their doctors.

TABLE 2. DESCRIPTIONS OF THE REPORTED AND UNREPORTED EXACERBATIONS

|                                     | Unreported       | Reported         | All              |
|-------------------------------------|------------------|------------------|------------------|
| Variable                            | (n = 327)        | (n = 159)        | (n = 486)        |
| Duration of symptom worsening, d    |                  |                  |                  |
| Median (IQR)                        | 5 (3–12)         | 10 (5–19)        | 7 (3–14)         |
| Minimum/maximum                     | 2/138            | 2/165            | 2/165            |
| No. of symptoms                     |                  |                  |                  |
| Median (IQR)                        | 2 (1-2.88)       | 3.42 (2.55-4.33) | 2.33 (1.50-3.50) |
| Minimum/maximum                     | 0.47/7           | 0.71/6.86        | 0.47/7           |
| Type or severity of symptoms, n (%) |                  |                  |                  |
| Any                                 | 327 (67)         | 159 (33)         | 486              |
| Dyspnea                             | 236 (66)         | 122 (34)         | 358              |
| Sputum amount                       | 110 (54)         | 92 (46)          | 202              |
| Sputum color                        | 49 (47)          | 55 (53)          | 104              |
| One symptom                         | 119 (86)         | 20 (14)          | 139              |
| Two symptoms                        | 94 (75)          | 32 (25)          | 126              |
| Three symptoms                      | 58 (70)          | 25 (30)          | 83               |
| Four or more symptoms               | 56 (41)          | 82 (59)          | 138              |
| PEF                                 |                  |                  |                  |
| Median (IQR)                        | 186 (153-245)    | 182 (140-245)    | 185 (150-245)    |
| Minimum/maximum                     | 78/478           | 62/484           | 62/484           |
| Rescue medication, per day          |                  |                  |                  |
| Median (IQR)                        | 1.75 (0.25-4.00) | 2.38 (0.33-4.50) | 2.00 (0.28-4.10) |
| Minimum/maximum                     | 0/25             | 0/24             | 0/25             |

Definition of abbreviations: IQR = interquartile range; PEF = peak expiratory flow.

TABLE 4. RELATIONSHIP BETWEEN EVENT CHARACTERISTICS AND REPORTING

| Variable                              | Crude HR | 95% CI    | Adjusted HR | 95% CI      |
|---------------------------------------|----------|-----------|-------------|-------------|
| PEF change*                           | 0.94     | 0.86-1.02 | 1.06        | 0.92-1.23   |
| Rescue medication change <sup>†</sup> | 1.18     | 1.01-1.37 | 1.10        | 0.94-1.29   |
| Mean no. of onset symptoms‡           | 1.58     | 1.37-1.81 | 1.59        | 1.37-1.84   |
| Increased dyspnea                     | 1.06     | 0.66-1.71 | 0.78        | 0.48-1.24   |
| Increased sputum quantity             | 2.42     | 1.54-3.80 | 1.55        | 0.94-2.54   |
| Sputum color                          | 2.71     | 1.66-4.42 | 1.09        | 0.54-2.20   |
| Cold symptoms                         | 2.00     | 1.26-3.19 | 0.64        | 0.38-1.08   |
| Increased cough                       | 3.61     | 2.03-6.44 | 1.61        | 0.81 - 3.22 |
| Increased wheeze                      | 1.35     | 0.85-2.14 | 0.44        | 0.25-0.77   |
| Sore throat                           | 2.14     | 1.34-3.42 | 0.91        | 0.51-1.53   |
| Weekend                               | 0.33     | 0.21-0.53 | 0.35        | 0.22-0.56   |
| Winter                                | 1.20     | 0.64-2.25 | 1.12        | 0.58-2.16   |

Definition of abbreviations: CI = confidence interval; HR = hazard ratio; PEF = peak expiratory flow.

<sup>\*</sup> Each 10 ml.

<sup>†</sup> Each activation.

<sup>&</sup>lt;sup>‡</sup> Each symptom.

5) The treatment has not changed in decades, probably because this non-specific definition has led to inconsistent research

Bronchodilators, systemic steroids, or antibiotics are prescribed to nearly all patients

#### The Rome definition

an event characterized by dyspnea and/or cough and sputum that has worsened within the last 14 days, which can be accompanied by tachypnea and/or tachycardia, and is often associated with increased local and systemic inflammation caused by airway infection, pollution, or other airway insults.

- 1) Time limit (less than 14 days)
- 2) Underlying pathophysiology (tachypnea, tachycardia as important clinical biomarkers)
- 3) Main triggering factors are indicated

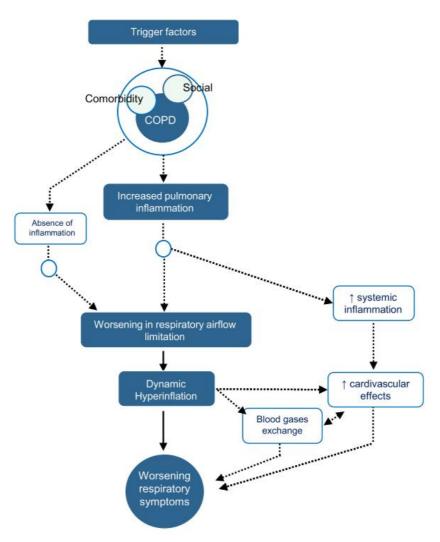
#### Still several unresolved issues

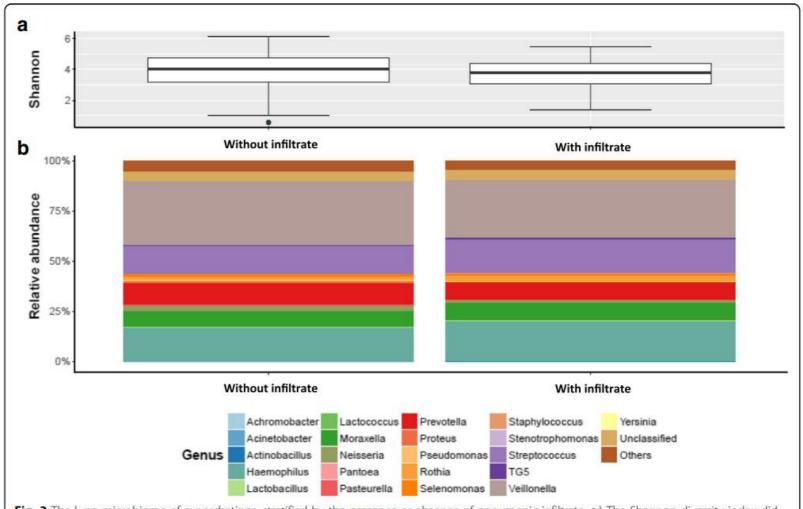
- 1) Tachypnea, tachycardia -> non-specific symptoms
- 2) Pauci-inflammatory exacerbations ranging 14-40%
- 3) Definitions including precipitating factors (airway infection, pollution or "other insults")

## COPD exacerbation syndrome (CES)

New definition in the GesEPOC 2021

Episode of clinical instability that occurs in a patient with COPD as a consequence of worsening airflow limitation or the underlying inflammatory process and is characterized by an acute worsening of respiratory symptoms with respect to the patient's baseline situation





Figure 1 Pathophysiology of COPD exacerbation syndrome. Reproduced with permission from Soler-Cataluna JJ, Pinera P, Trigueros JA, et al. Spanish COPD guidelines (GesEPOC) 2021 update diagnosis and treatment of COPD exacerbation syndrome. Arch Bronconeumol. 2022;58(2):159–170. Copyright © 2021 SEPAR. Published by Elsevier España, S.L.U. All rights reserved.

# Consequences of the New Concept

Several other concomitant diseases (pneumonia, heart failure, pulmonary embolism)

-> under the umbrella of CES

the better identification and characterization of exacerbations, by including symptoms, lung function and inflammation



**Fig. 3** The lung microbiome of exacerbations, stratified by the presence or absence of pneumonic infiltrate. **a**.) The Shannon diversity index did not show any significant difference between radiological groups (p = 0.34). **b**.) The genus-level abundances showed no significant differences between groups (p = 0.54)

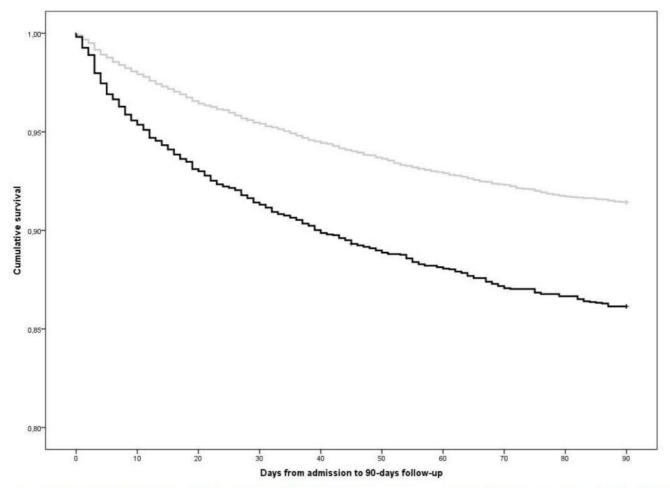



Fig 1. Kaplan-Meier curves comparing patients with and without consolidation. Black line represents patients with radiological consolidation. Grey line represents patients without consolidation.

doi:10.1371/journal.pone.0134004.g001

|                      | Definition                       | In-hospital<br>mortality |
|----------------------|----------------------------------|--------------------------|
| BAP-65 <sup>53</sup> |                                  |                          |
| Class I              | No risk factor and age ≤65 years | 0.5%                     |
| Class II             | No risk factor and age >65 years | 1.4%                     |
| Class III            | 1 risk factor                    | 3.7%                     |
| Class IV             | 2 risk factors                   | 12.7%                    |
| Class V              | 3 risk factors                   | 26.2%                    |
| DeCOPD54             |                                  |                          |
| Mild                 | Score 0                          | 0.17%                    |
| Moderate             | Score 2–6                        | 2.06%                    |
| Severe               | Score 7–11                       | 5.94%                    |
| Very severe          | Score 12–18                      | 27.91%                   |
| Roche et al, 201     | 4 <sup>55</sup>                  |                          |
| Tertile 1            | Score 0                          | 0%                       |
| Tertile 2            | Score 1–2                        | 1.6%                     |
| Tertile 3            | Score 3–9                        | 5.5%                     |

Table: Summary of the main severity scores for exacerbations of chronic obstructive pulmonary disease and risk of in-hospital mortality

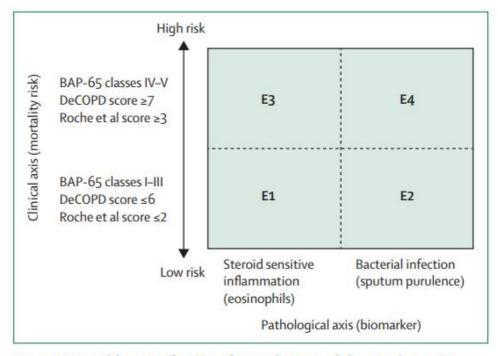



Figure: Proposal for stratification of exacerbations of chronic obstructive pulmonary disease E=exacerbation.

Table 2 Treatable Trait Domains to Consider in a Patient with COPD Exacerbation Syndrome

| Treatable Traits                      | Biomarkers                                                   | Treatments                                    |  |
|---------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--|
| Endotypes                             |                                                              |                                               |  |
| Bacterial infection                   | Dark sputum  CRP (≥20 mg/L)  Neutrophils to Lymphocyte ratio | Antibiotic                                    |  |
| Th2 inflammation                      | Blood eosinophils                                            | Systemic corticosteroids                      |  |
| Ventricular dysfunction               | NT-pro-BNP                                                   | Diuretics Beta-blockers ARA-II ACE inhibitors |  |
| Ischemic heart disease                | Troponin                                                     | Antiaggregant Beta-blockers                   |  |
| Lung function                         |                                                              |                                               |  |
| Worsening of airflow limitation       | FEV <sub>1</sub> PEF                                         | Bronchodilators                               |  |
| Acute hypoxemic respiratory failure   | PaO2 < 60 mmHg                                               | Oxygen therapy                                |  |
| Acute hypercapnic respiratory failure | PaCO2 > 45 mmHg                                              | Avoid sedative drugs / Ventilatory support    |  |
| Respiratory acidosis                  | pH<7.35                                                      | Ventilatory support                           |  |
| Imagen by radiography or CT           |                                                              |                                               |  |
| Pneumonia<br>Pulmonary embolism       | Infection D-dimer levels CT-angiography                      | Antibiotics Anticoagulants                    |  |
| Pulmonary hypertension                | Pulmonary / aortic arteries ratio                            | Consider oxygen                               |  |

## Evaluation of severity

Traditional assessment of severity

Mild -> no specific additional treatment is prescribed Moderate -> oral steroid or antibiotics are used Severe -> Hospitalized

This approach does not help the physician to determine the best treatment and prognosis

Table 2. Distribution of BAP-65 Class and Corresponding Mortality by Derivation and Validation Cohorts

|                              |                          |                   | No. (%)   |                   |           |  |  |
|------------------------------|--------------------------|-------------------|-----------|-------------------|-----------|--|--|
| DAD CE                       |                          | Derivation Cohort |           | Validation Cohort |           |  |  |
| BAP-65<br>Class <sup>a</sup> | Description              | Prevalence        | Mortality | Prevalence        | Mortality |  |  |
| 1                            | 0 BAP present, age ≤65 y | 7710 (17.6)       | 21 (0.3)  | 7577 (17.2)       | 24 (0.3)  |  |  |
| 2                            | 0 BAP present, age >65 y | 15 095 (34.4)     | 134 (0.9) | 15 029 (34.0)     | 146 (1.0) |  |  |
| 3                            | 1 BAP present            | 17 402 (39.7)     | 366 (2.1) | 17 798 (40.3)     | 400 (2.3) |  |  |
| 4                            | 2 BAP present            | 3396 (7.7)        | 213 (6.3) | 3478 (7.9)        | 225 (6.5) |  |  |
| 5                            | 3 BAP present            | 290 (0.7)         | 40 (13.8) | 299 (0.7)         | 42 (14.1) |  |  |

a "B" stands for blood urea nitrogen level higher than 25 mg/dL (to convert to millimoles per liter, multiply by 0.357); "A" stands for altered mental status defined as a Glasgow Coma Scale score lower than 14 or a designation of disoriented, stupor, or coma by a physician; "P" stands for pulse higher than 109/min; and "65" stands for older than 65 years.

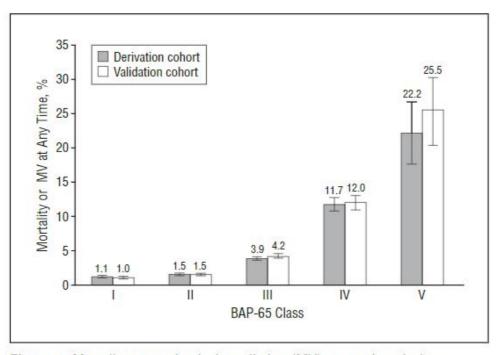



Figure 4. Mortality or mechanical ventilation (MV) at any time during hospitalization by BAP-65 class. Results are presented as median and 2.5th percentile and 97.5th percentile based on 1000 bootstrap reiterations. BAP-65 indicates blood urea nitrogen level higher than 25 mg/dL (to convert to millimoles per liter, multiply by 0.357); altered mental status, defined as a Glasgow Coma Scale score lower than 14 or a designation of disoriented, stupor, or coma by a physician; pulse higher than 109/min; and age older than 65 years.

Table 2 Independent categorical predictors of inhospital mortality

| Variable                                   | В     | Odds ratio (95% CI) | Significance |
|--------------------------------------------|-------|---------------------|--------------|
| eMRCD 1-4                                  |       | 1                   |              |
| eMRCD 5a                                   | 1.63  | 5.11 (2.62 to 9.97) | < 0.001      |
| eMRCD 5b                                   | 1.99  | 7.30 (3.77 to 14.2) | < 0.001      |
| Coexistent consolidation                   | 1.06  | 2.88 (1.69 to 4.90) | < 0.001      |
| Eosinophil count <0.05 ×10 <sup>9</sup> /l | 1.02  | 2.76 (1.58 to 4.83) | 0.001        |
| pH <7.3                                    | 0.99  | 2.68 (1.41 to 5.09) | 0.003        |
| AF                                         | 0.98  | 2.66 (1.39 to 5.09) | 0.003        |
| Ineffective cough                          | 0.94  | 2.57 (1.37 to 4.84) | 0.003        |
| Albumin <36 g/l                            | 0.84  | 2.32 (1.36 to 3.96) | 0.002        |
| Cerebrovascular disease                    | 0.70  | 2.02 (1.18 to 3.42) | 0.037        |
| Age ≥80                                    | 0.70  | 2.01 (1.18 to 3.42) | 0.011        |
| BMI <18.5 kg/m <sup>2</sup>                | 0.60  | 1.83 (1.00 to 3.33) | 0.049        |
| Intercept                                  | -4.30 |                     |              |

AF, atrial fibrillation; BMI, body mass index; eMRCD, extended MRC dyspnoea.

Table 3 The DECAF Score

| Variable                              | Score |
|---------------------------------------|-------|
| Dyspnoea                              |       |
| eMRCD 5a                              | 1     |
| eMRCD 5b                              | 2     |
| Eosinopenia ( $<0.05 \times 10^9/I$ ) | 1     |
| Consolidation                         | 1     |
| Acidaemia (pH <7.3)                   | 1     |
| Atrial fibrillation                   | 1     |
| Total DECAF Score                     | 6     |

DECAF, Dyspnoea, Eosinopenia, Consolidation, Acidaemia and atrial Fibrillation; eMRCD, extended MRC dyspnoea.

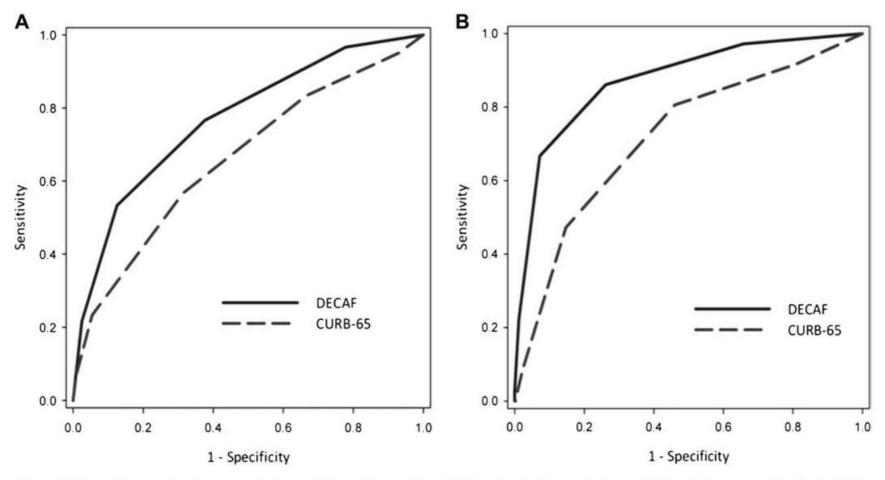



Figure 2 Receiver operator characteristic curve showing discrimination of Dyspnoea, Eosinopenia, Consolidation, Acidaemia and atrial Fibrillation (DECAF) Score and CURB-65 for inhospital mortality for patients with (n=299, panel A) and without (n=621, panel B) consolidation.

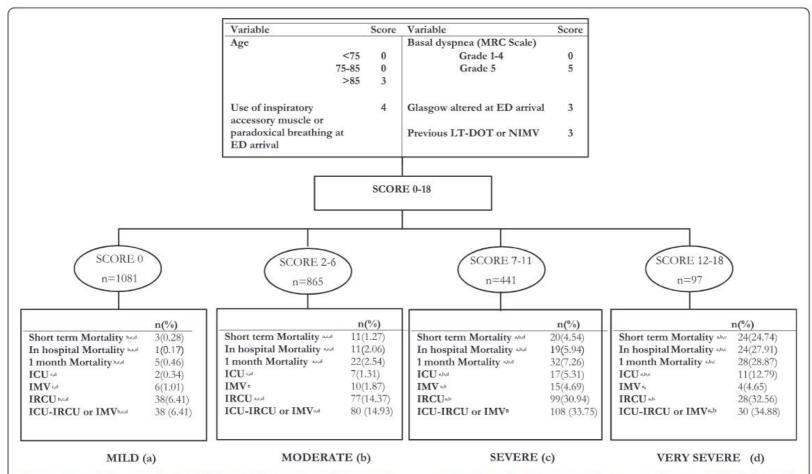
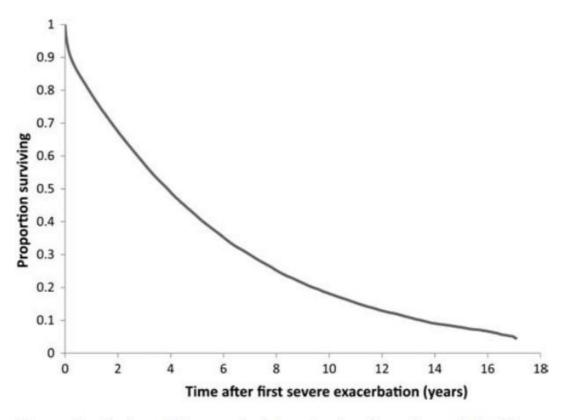



Figure 1 Death in exacerbation of chronic obstructive pulmonary disease: construction of continuous and categorical scores and relation with different outcomes. ICU: Intensive Care Unit, IMV: Invasive mechanical ventilation, IRCU: Intermediate Respiratory Care Unit, LT-HOT: Long-term home oxygen therapy, NIMV: Noninvasive mechanical ventilation. Superscript letters indicated statistical significant differences among the DeCOPD risk classes for the outcomes displayed.

Table 3 Severity Classification of COPD Exacerbation, According to GesEPOC Proposal (11)

| Severity                                                                         | GesEPOC Proposal Criteria for Judging Severity                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mild (All criteria must be met)                                                  | <ul> <li>Low-risk stratification according to baseline status* and all the following:         <ul> <li>Dyspnea ≤ 2 (mMRC)</li> <li>RR &lt; 24 breaths/min</li> <li>Resting SaO2 ≥ 95% breathing ambient air</li> <li>Normal level of consciousness</li> </ul> </li> </ul>                                                                                          |
| Moderate (Any of the criteria must be met)                                       | <ul> <li>High-risk stratification according to baseline status* and all the following:         <ul> <li>Dyspnea ≤ 2 (mMRC)</li> <li>Normal level of consciousness</li> </ul> </li> <li>Low or high-risk stratification and any of the following:         <ul> <li>RR, 24–30 breaths/min</li> <li>Resting SaO2, 90–95% breathing ambient air</li> </ul> </li> </ul> |
| Severe (Any of the criteria must be met, regardless of baseline risk level)      | <ul> <li>Dyspnea ≥3 (mMRC)</li> <li>Somnolence</li> <li>RR, &gt;30 breaths/min</li> <li>Resting SaO2&lt;90% or PaO2&lt;60 mmHg, breathing ambient air</li> </ul>                                                                                                                                                                                                   |
| Very severe (Any of the criteria must be met, regardless of baseline risk level) | Stupor / coma     pH<7.35 orPaCO2≥60 mmHg                                                                                                                                                                                                                                                                                                                          |


Notes: \*Baseline risk stratification according to GesEPOC (11), Low risk, Dyspnea, 0-1 (mMRC), FEV<sub>1</sub>>50%, 0-1 exacerbation in the last year and no hospitalizations in the last year (all criteria must be met); High risk, Dyspnea $\geq 2$  (mMRC) or FEV<sub>1</sub><50% or Two or more moderate exacerbations in the last year or at least 1 hospitalization in the last year.

Abbreviation: mMRC, modified Medical Research Council Dyspnea scale.

#### Recurrence of Exacerbations

During the clinical presentation of COPD, It is common to find patients whose exacerbations accumulate in clusters.

One exacerbation leads to future exacerbations, which increase in frequency and time proximity.



**Figure 2** Kaplan—Meier survival function for the cohort of 73 106 patients from the time of their first ever hospitalisation for a chronic obstructive pulmonary disease exacerbation over the 17-year follow-up period.

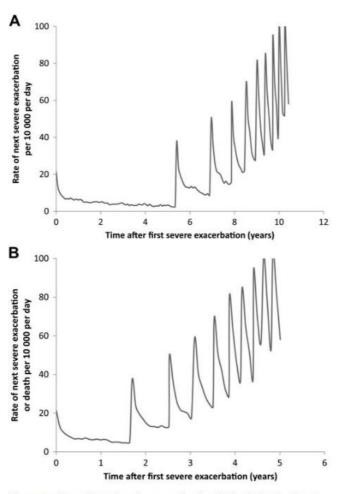



Figure 3 Hazard function of successive hospitalised chronic obstructive pulmonary disease (COPD) exacerbations (per 10 000 per day) for the cohort of 73 106 patients from the time of their first ever hospitalisation for a COPD exacerbation over the follow-up period, with the time between successive exacerbations estimated using: (A) the median inter-exacerbation times, conditional on survival with death as a competing risk; and (B) the median inter-exacerbation times as time to the next exacerbation or death, whichever occurs first.

#### **Original Article**

# Impact of a Home Telehealth Program After a Hospitalized COPD Exacerbation: A Propensity Score Analysis

Pedro J. Marcos <sup>a,\*</sup>, Cristina Represas Represas <sup>b</sup>, Cristina Ramos <sup>b</sup>, Blanca Cimadevila Álvarez <sup>c</sup>, Alberto Fernández Villar <sup>b</sup>, Angélica Fraga Liste <sup>c</sup>, Susana Fernández Nocelo <sup>c</sup>, Javier Quiles del Río <sup>c</sup>, Carlos Zamarrón Sanz <sup>d</sup>, Rafael Golpe <sup>e</sup>, José Abal Arca <sup>f</sup>, Uxío Calvo Álvarez <sup>g</sup>, Sonia Pértega <sup>h</sup>, Julio García Comesaña <sup>i</sup>

<sup>&</sup>lt;sup>a</sup> Servicio de Neumología, Dirección Asistencial, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Area Sanitaria da Coruña e Cee, Sergas, Universidade da Coruña (UDC), As Xubias, 15006 A Coruña, Spain

b Servicio de Neumología, NeumoVigoI+i Research Group, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Hospital Álvaro Cunqueiro de Vigo, Sergas, Spain

<sup>&</sup>lt;sup>c</sup> Servicio Galego de Saude (SERGAS), Santiago de Compostela, Galicia, Spain

d Servicio de Neumología, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Sergas, Spain

e Servicio de Neumología, Hospital Universitario Lucus Augusti de Lugo, Sergas, Spain

f Servicio de Neumología, Complejo Hospitalario Universitario de Ourense (CHUOU), Sergas, Spain

g Sección de Neumología, Hospital Arquitecto Marcide de Ferrol, Sergas, Spain

h Epidemiology and Biostatistics Unit, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, 15006 A Coruña, Spain

i Xerencia, Estructura Organizativa Integrada (EOXI) de Vigo, Sergas, Spain

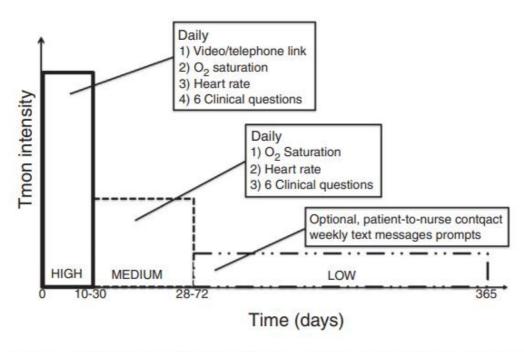



Fig. 1. Levels of intensity of telemonitoring and time of follow up. Tmon: telemonitoring, O<sub>2</sub>: oxygen.

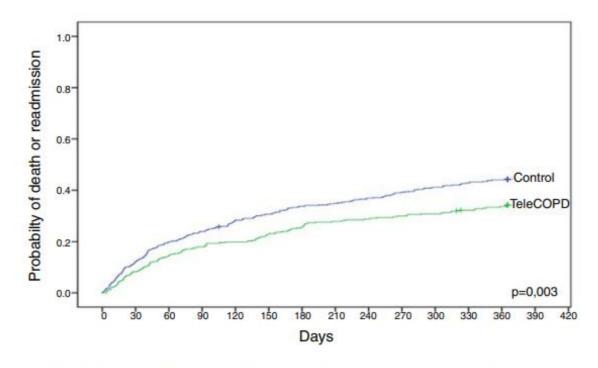
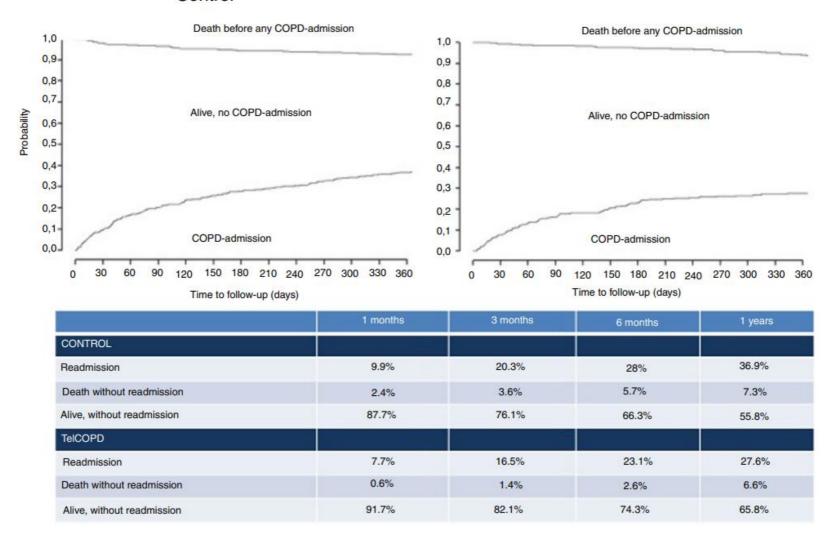




Fig. 3. Probability of death or readmission during the first year.

#### Control



#### Conclusions

Despite the advances made in recent decades, the concept of what is an exacerbation continues to be an ongoing source of debate

The GesEPOC 2021 has sought to provide an updated assessment based on the methodology of evidence-based medicine

Communication technologies applied to respiratory medicine will also help us to achieve a more personalized management of the disease